一、导读
电磁超材料能够将光子挤压到高强度电场增强的热点区域,从而产生强烈的光与物质相互作用,为下一代新兴生物传感器奠定了基础。特别是作为一种可行的传感平台,解决了太赫兹波长与生物分子尺度不匹配导致的灵敏度有限的问题。然而,检测过程中在热点周围随机分布的生物分子会导致大部分分析物无法参与到相互作用中。
2024年2月,福建省太赫兹功能器件与智能传感重点实验室在生物电子传感类顶级期刊《Biosensors and Bioelectronics》(中科院1区TOP,IF:12.6)发表了题为“Passive trapping of biomolecules in hotspots with all-dielectric terahertz metamaterials”的文章。论文提出了一种全硅介质太赫兹超材料传感器,它能够利用溶液的蒸发过程将生物分子被动捕获至具有强电场限制的谐振腔中,从而实现高灵敏的分子检测。福建省太赫兹功能器件与智能传感重点实验室2021级博士研究生林廷玲为本论文的第一作者,实验室主任钟舜聪教授和实验室黄异老师是本文的共同通讯作者。
二、内容简介
本研究提出的全介质超材料传感器是在硅片上刻蚀周期性的凹槽和通孔而成,其支持多个由连续域束缚态驱动的高Q值共振。重要的是,激发的电场被紧紧限制在谐振器的孔中,产生高强度的周期性热点。通过将生物分子递送至孔中,与电场的空间重叠最大化,可以显著促进光与物质相互作用并提高灵敏度。
Figure 1. All-dielectric metamaterial sensor for analyte molecules passive trapping into hotspots. a, Conceptual illustration of THz metamaterial sensor accompanied by analyte molecules in the holes.b, Measured THz transmittance spectra both without analyte and L-proline with an amount of 0.2 mg.c, Calculated electric field enhancement (under y-polarized first-order) over the unit cell, and insets displaying a series of side-view distributions.d, The field intensity of a unit particle along the longitudinal direction, where the color portion represents the region of the holes.
超材料的实验结果显示其Q值由凹槽引起的不对称度控制,最高可达124.8,与模拟结果极其吻合。优异的Q值对于传感十分有利,其允许检测介电环境的微弱变化。
Figure 2. Symmetry-protected quasi-BIC resonances of the all-dielectric metamaterial. a, The dielectric metamaterial design consists of grooves and through-hole arrays etched onto silicon wafers.b,Qfactors as a function of the asymmetry parameterαto compare the ideal case with lossless Si, the real case with lossy Si, and experimentally capturedQfactors from measurements undery-polarized, where theα=Δh/h.c-f, Color plots of numerical transmittance spectra for real case varying with asymmetry parameterα, and corresponding transmittance spectra from measurements and simulations forα= 0.07, 0.1 under (c, d) y- and (e, f) x-polarized THz incidences.
通过液体石蜡表征了超材料的折射率传感能力,实现了最高0.226 RIU-1的归一化折射率灵敏度以及15.2的品质因数,表明提出的传感器具有优异性能。
Figure 3. Refractive index sensing using the fabricated all-dielectric metamaterial (α = 0.1). a, Photograph of a fabricated large-area all-dielectric metamaterial used for transmittance experiments.b, c, Micrographs of the metamaterial confirmed the homogeneity of the microstructures.d, e, Experimental transmittance spectra of the metamaterial sensor for nitrogen and liquid paraffin iny- andx-polarized cases.f, Distribution of electric fields in the metaunit showing both first- and second-order modes.g,Sn and FOM of the all-dielectric metamaterial.
为了验证所设计的结构具有的被动捕获生物分子的能力,以三种不同的氨基酸分子作为检测目标,利用溶液的蒸发过程,分子最终沉淀在孔中,即电场激发处。最终实现定性和定量检测氨基酸分子,并且依赖高Q值谐振实现了8.7 nmol的可靠检测限。
Figure 4. Biomolecular sensing with dielectric metamaterial sensors (y-polarized case). a, Rendering schematics depicting the underlying process of passive molecule trapping to holes with all-dielectric structures.b, Optical microscope images of device surfaces deposited with different amounts of L-proline (Scale bar: 200 μm).c, Measured transmittance spectra of the THz metasensor device for different amounts (from 0.01 to 0.2 mg) of L-proline.d, Transmittance spectra for three different amino acids at the same amount (0.2 mg).e, Comparison of resonance shifts in response to different amounts for first- and second-order resonances. Error bars indicate the standard deviation.
三、总结
论文提出了一种具有被动捕获生物分子功能的先进太赫兹超材料传感平台。该器件同时优雅地实现了在优化微结构传感器需要考虑的多个参数,例如低损耗全介质材料、高Q共振、将太赫兹场严格限制在空穴中以产生增强的电场,以及确保分析物与热点高度空间重叠的被动捕获功能。通过实验报告了高达0.225 RIU-1的归一化折射率灵敏度以及15.2的出色品质因数。并且展示了提出的超材料的巨大潜力,拥有无需外部能量的捕获机制实现对不同的氨基酸的定性和定量检测。此外,其独特的纵向对称性破坏设计使其能够灵活地设计方孔,并对制造具有更高的耐受性,并有望与成熟的表面功能化技术相结合,用于更复杂的生物检测。
原文链接:https://doi.org/10.1016/j.bios.2024.116126